
Termination-checked Solidity-style smart contracts in Agda in the
presence of Turing completeness

.FahadAlhabardi1 and Anton Setzer2
1,2Swansea University, Blockchain Lab, Dept. of Computer Science, UK

Types 2024
IT University of Copenhagen, Copenhagen, Denmark

June 10, 2024

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 1 / 26

Termination-checked Solidity-style smart contracts in Agda
in the presence of Turing completeness

J.w.w. Fahad Alhabardi
§ 552 p. PhD thesis expected soon to become public

Smart contract = program placed on the blockchain which is
automatically executed when conditions in the blockchains are
satisfied [10].
Topic of this talk are

§ Smart Contracts of the cryptocurrency Ethereum
§ written in the object-oriented language Solidity
§ which is Turing complete
§ and how to deal with the termination problem.

Based on the model of objects using coalgebras in Agda [1].

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 2 / 26

Table of Contents

1 Background

2 Model of Smart Contracts in Agda

3 Execution of Smart Contracts

4 Conclusion

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 3 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Execution of Smart Contracts

4 Conclusion

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 4 / 26

Ethereum

Ethereum = A second-generation Blockchain [9].
Main difference to Bitcoin is in the use of smart contracts:

§ Bitcoin Smart Contracts (Bitcoin Script)
‹ no loops, which guarantees termination,
‹ functionality as smart contract language very limited, many say not

enough to call it Smart Contract.
§ Ethereum [11]:

‹ Turing complete language which includes loops;
‹ allows calls to other contracts;
‹ problem that validators need to execute smart contracts without

knowing whether they terminate;
‹ Ethereum solves this by adding a cost of execution of instructions

(gas) to guarantee termination.

Recent switch from proof of work to proof of stake [7],
solving the waste of energy problem for Ethereum.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 5 / 26

Smart Contracts

Smart contracts are immutable programs [5].
Smart contracts in the cryptocurrency Ethereum are usually written in
the high-level language Solidity [8] which compiles into the low-level
Ethereum Virtual Machine (EVM) [6].
Ethereum is a World State Machine with essentially immutable
history.
Example applications:

§ Non-monetary applications
‹ Tracing of goods (e.g. tracing organic apples in super market through

intermediate vendors to farmers)
‹ Electronic voting,

§ Monetary applications
‹ investment fonds (DAO).

Because of immutability, high monetary impact, and
shortness of programs, prime candidate for verification.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 6 / 26

Smart Contracts

Blockchain is roughly speaking a data base which determines for
each address its current state
(amount of money, other data, smart contracts).
In Ethereum smart contracts = objects deployed to addresses,
with methods (called functions), which can be called by

§ non-smart-contract accounts (called externally-owned)
§ other smart contracts.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 7 / 26

Toy example (Solidity)

1 contract Test1 {
2 Test2 test2;
3 // code for setting test2 omitted .
4
5 function f (int n) public view returns (int){
6 return test2.g(n);
7 }
8 }
9

10 contract Test2{
11 Test1 test1;
12 // code for setting test1 omitted .
13
14 function g (int n) public view returns (int){
15 if (n > 0) { return test1.f(n - 1);}
16 else { return 0;}
17 }
18 }

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 8 / 26

Contribution

Previous work:
§ Verification of Bitcoin smart contracts using

weakest preconditions of Hoare logic for access control [4, 2]
in Agda.

§ Introduction of a simple model [3] of Solidity-style
smart contracts which doesn’t involve gas.

This Talk:
§ Addition of gas cost to solve the termination problem
(modeling implementation in Ethereum).

§ Resulting code termination checks in Agda.
Goal of the Project:

§ Verify Solidity style smart contracts using weakest precondition
semantics.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 9 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Execution of Smart Contracts

4 Conclusion

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 10 / 26

Messages

In Solidity functions have arguments and result types originating from
a rich type structure.
The EVM is untyped, and uses serialised arguments and return
values.
In our model, we abstract from this encoding by defining a
message data type:

data Msg : Set where nat : (n : N) → Msg
list : (l : List Msg) → Msg

This data type allows to represent elements of data types such as
lists (called arrays), finite maps, enumerations, integers.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 11 / 26

Programs (SmartContractExec)

The body of a function is represented as an element of
SmartContractExec:

data SmartContractExec (A : Set) : Set where
return : A → (gascost : N) → SmartContractExec A
error : ErrorMsg → DebugInfo

→ SmartContractExec A
exec : (c : CCommands)

→ (cont : CResponse c → SmartContractExec A)
→ (gascostCont : CResponse c → N)
→ SmartContractExec A

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 12 / 26

Contract

record Contract : Set where
field
amount : Amount
fun : FunctionName → Msg → SmartContractExec Msg
viewFunction : FunctionName → Msg → MsgOrError
viewFunctionCost : FunctionName → Msg → N

Which includes the fields:
The balance of a contract (amount),
its functions (fun);
its view functions (viewFunction);
the estimated gas cost for executing a view function
(viewFunctionCost).

Normal functions can modify view functions.
We use view functions to represent variables.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 13 / 26

Ledger

The state of a ledger determines for any address function name and
msg argument the smart contract function to be executed:

Ledger = Address → Contract

Strictly speaking the Ledger should be called LedgerState, since it
excludes the history of the ledger.

§ Execution of a smart contracts depends only on the current state of
the ledger.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 14 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Execution of Smart Contracts

4 Conclusion

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 15 / 26

Intermediate State of Execution

record StateExecFun : Set where
field ledger : Ledger

executionStack : ExecutionStack
initialAddr lastCallAddr calledAddr : Address
nextstep : SmartContractExec Msg
gasLeft : N
funNameevalState : FunctionName
msgevalState : Msg

The state of the execution (StateExecFun) include the following fields:
The ledger;
the execution stack (executionStack);
the initial address that initiated the current sequence (initialAddr);
the last called made (lastCallAddr);

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 16 / 26

State Execution Function (Cont.)

the address which is called (calledAddr);
the current code to be executed (nextstep);
the gas left (gasLeft);
two extra fields that we use with debug information:
funcNameexecStackE and msgexecStackEl.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 17 / 26

Execution Stack Element

The elements of ExecutionStack are given by

record ExecStackEl : Set where
field lastCallAddress calledAddress : Address

continuation : Msg → SmartContractExec Msg
costCont : Msg → N
funcNameexecStackEl : FunctionName
msgexecStackEl : Msg

with the following fields:
The address that made the last call (lastCallAddress);
the address that was called (calledAddress);
continuation which determines the next execution step to be executed
depending on the message returned after the call to the function has
been completed;
funcNameexecStackE which is the last function called and the
argument of the last function call (msgexecStackEl).

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 18 / 26

Evaluation of Function Calls

evaluateTerminatingfinal :
Ledger
→ (initialAddr lastCallAddr calledAddr: Address)
→ (funName : FunctionName)
→ (msg : Msg)
→ (gaslimit : N)
→ Ledger × MsgOrErrorWithGas

Evaluates a call
§ from lastCallAddr
§ to function funName applied to msg in contract calledAddr
§ using gas limit gaslimit
§ assuming the chain of calls was initiated from externally owned account

initialAddr

evaluateTerminatingfinal termination checks in Agda.
Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 19 / 26

1 Background

2 Model of Smart Contracts in Agda

3 Execution of Smart Contracts

4 Conclusion

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 20 / 26

Conclusion

Solidity is object oriented and functions can call each other
mutually.
Use of gas to guarantee termination.
Development of a model in Agda which allows to execute smart
contract functions.
Gas cost is added as explicit parameters to commands.
Execution of smart contracts termination checks in Agda.
Development of a simulator, which allows to simulate Ethereum
including smart contracts interactively in Agda.
Aim is to use weakest precondition semantics to verify Solidity
smart contracts.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 21 / 26

Thank you for listening.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 22 / 26

[1] Andreas Abel, Stephan Adelsberger, and Anton Setzer.
Interactive programming in Agda – Objects and graphical user
interfaces.
Journal of Functional Programming, 27:e8, Jan 2017.
https://doi.org/10.1017/S0956796816000319.
doi:10.1017/S0956796816000319.

[2] Fahad Alhabardi, Bogdan Lazar, and Anton Setzer.
Verifying correctness of smart contracts with conditionals.
In 2022 IEEE 1st Global Emerging Technology Blockchain Forum:
Blockchain & Beyond (iGETblockchain), pages 1–6, 2022.
doi: https:
//doi.org/10.1109/iGETblockchain56591.2022.10087054.

[3] Fahad Alhabardi and Anton Setzer.
A simple model of smart contracts in Agda, January 2023.
In Abstracts for Types 2023.
URL: https://types2023.webs.upv.es/TYPES2023.pdf.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 23 / 26

https://doi.org/10.1017/S0956796816000319
https://doi.org/10.1017/S0956796816000319
https://doi.org/10.1109/iGETblockchain56591.2022.10087054
https://doi.org/10.1109/iGETblockchain56591.2022.10087054
https://types2023.webs.upv.es/TYPES2023.pdf

[4] Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton
Setzer.
Verification of Bitcoin Script in Agda Using Weakest Preconditions
for Access Control.
In 27th International Conference on Types for Proofs and Programs
(TYPES 2021), volume 239 of LIPIcs, pages 1:1–1:25, Dagstuhl,
Germany, 2022. Leibniz-Zentrum für Informatik.
doi: https://doi.org/10.4230/LIPIcs.TYPES.2021.1.

[5] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A Survey of Attacks on Ethereum Smart Contracts (SoK).
In Principles of Security and Trust, pages 164–186, Berlin,
Heidelberg, 2017. Springer.
doi: https://doi.org/10.1007/978-3-662-54455-6_8.

[6] Vitalik Buterin.
Ethereum: A next-generation smart contract and decentralized
application platform, 2014.
Availabe from https://ethereum.org/en/whitepaper.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 24 / 26

https://doi.org/10.4230/LIPIcs.TYPES.2021.1
https://doi.org/10.1007/978-3-662-54455-6_8
https://ethereum.org/en/whitepaper

[7] Ethereum community.
Proof-of-Stake (POS), Retrieved 03 May 2023.
Availabe from https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/.

[8] Ethereum Community.
Solidity documentation, Retrieved 15 April 2023.
Availabe from https://docs.soliditylang.org/en/v0.8.16/.

[9] Han-Min Kim, Gee-Woo Bock, and Gunwoong Lee.
Predicting ethereum prices with machine learning based on
blockchain information.
Expert Systems with Applications, 184:115480, 2021.
doi:https://doi.org/10.1016/j.eswa.2021.115480.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 25 / 26

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://docs.soliditylang.org/en/v0.8.16/
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115480

[10] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor.
Making Smart Contracts Smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 254–269, New York,
NY, USA, 2016. Association for Computing Machinery.
doi:http://dx.doi.org/10.1145/2976749.2978309.

[11] Dejan Vujičić, Dijana Jagodić, and Siniša Ranđić.
Blockchain technology, Bitcoin, and Ethereum: A brief overview.
In 2018 17th International Symposium INFOTEH-JAHORINA
(INFOTEH), pages 1–6, 2018.
doi:http://dx.doi.org/10.1109/INFOTEH.2018.8345547.

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 26 / 26

https://doi.org/http://dx.doi.org/10.1145/2976749.2978309
https://doi.org/http://dx.doi.org/10.1109/INFOTEH.2018.8345547

	Background
	Model of Smart Contracts in Agda
	Execution of Smart Contracts
	Conclusion

