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Smart contract = program placed on the blockchain which is
automatically executed when conditions in the blockchains are
satisfied [10].
Topic of this talk are

§ Smart Contracts of the cryptocurrency Ethereum
§ written in the object-oriented language Solidity
§ which is Turing complete
§ and how to deal with the termination problem.

Based on the model of objects using coalgebras in Agda [1].
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Ethereum

Ethereum = A second-generation Blockchain [9].
Main difference to Bitcoin is in the use of smart contracts:

§ Bitcoin Smart Contracts (Bitcoin Script)
‹ no loops, which guarantees termination,
‹ functionality as smart contract language very limited, many say not

enough to call it Smart Contract.
§ Ethereum [11]:

‹ Turing complete language which includes loops;
‹ allows calls to other contracts;
‹ problem that validators need to execute smart contracts without

knowing whether they terminate;
‹ Ethereum solves this by adding a cost of execution of instructions

(gas) to guarantee termination.

Recent switch from proof of work to proof of stake [7],
solving the waste of energy problem for Ethereum.
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Smart Contracts

Smart contracts are immutable programs [5].
Smart contracts in the cryptocurrency Ethereum are usually written in
the high-level language Solidity [8] which compiles into the low-level
Ethereum Virtual Machine (EVM) [6].
Ethereum is a World State Machine with essentially immutable
history.
Example applications:

§ Non-monetary applications
‹ Tracing of goods (e.g. tracing organic apples in super market through

intermediate vendors to farmers)
‹ Electronic voting,

§ Monetary applications
‹ investment fonds (DAO).

Because of immutability, high monetary impact, and
shortness of programs, prime candidate for verification.
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Smart Contracts

Blockchain is roughly speaking a data base which determines for
each address its current state
(amount of money, other data, smart contracts).
In Ethereum smart contracts = objects deployed to addresses,
with methods (called functions), which can be called by

§ non-smart-contract accounts (called externally-owned)
§ other smart contracts.
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Toy example (Solidity)

1 contract Test1 {
2 Test2 test2;
3 // code for setting test2 omitted .
4
5 function f (int n) public view returns (int){
6 return test2.g(n);
7 }
8 }
9

10 contract Test2{
11 Test1 test1;
12 // code for setting test1 omitted .
13
14 function g (int n) public view returns (int){
15 if (n > 0) { return test1.f(n - 1);}
16 else { return 0;}
17 }
18 }
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Contribution

Previous work:
§ Verification of Bitcoin smart contracts using

weakest preconditions of Hoare logic for access control [4, 2]
in Agda.

§ Introduction of a simple model [3] of Solidity-style
smart contracts which doesn’t involve gas.

This Talk:
§ Addition of gas cost to solve the termination problem
(modeling implementation in Ethereum).

§ Resulting code termination checks in Agda.
Goal of the Project:

§ Verify Solidity style smart contracts using weakest precondition
semantics.
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Messages

In Solidity functions have arguments and result types originating from
a rich type structure.
The EVM is untyped, and uses serialised arguments and return
values.
In our model, we abstract from this encoding by defining a
message data type:

data Msg : Set where nat : (n : N) → Msg
list : (l : List Msg) → Msg

This data type allows to represent elements of data types such as
lists (called arrays), finite maps, enumerations, integers.
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Programs (SmartContractExec)

The body of a function is represented as an element of
SmartContractExec:

data SmartContractExec (A : Set) : Set where
return : A → (gascost : N) → SmartContractExec A
error : ErrorMsg → DebugInfo

→ SmartContractExec A
exec : (c : CCommands)

→ (cont : CResponse c → SmartContractExec A)
→ (gascostCont : CResponse c → N)
→ SmartContractExec A

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 12 / 26



Contract

record Contract : Set where
field
amount : Amount
fun : FunctionName → Msg → SmartContractExec Msg
viewFunction : FunctionName → Msg → MsgOrError
viewFunctionCost : FunctionName → Msg → N

Which includes the fields:
The balance of a contract (amount),
its functions (fun);
its view functions (viewFunction);
the estimated gas cost for executing a view function
(viewFunctionCost).

Normal functions can modify view functions.
We use view functions to represent variables.
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Ledger

The state of a ledger determines for any address function name and
msg argument the smart contract function to be executed:

Ledger = Address → Contract

Strictly speaking the Ledger should be called LedgerState, since it
excludes the history of the ledger.

§ Execution of a smart contracts depends only on the current state of
the ledger.
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Intermediate State of Execution

record StateExecFun : Set where
field ledger : Ledger

executionStack : ExecutionStack
initialAddr lastCallAddr calledAddr : Address
nextstep : SmartContractExec Msg
gasLeft : N
funNameevalState : FunctionName
msgevalState : Msg

The state of the execution (StateExecFun) include the following fields:
The ledger;
the execution stack (executionStack);
the initial address that initiated the current sequence (initialAddr);
the last called made (lastCallAddr);

Anton Setzer Termination-checked Solidity-style smart contracts in Agda June 10, 2024 16 / 26



State Execution Function (Cont.)

the address which is called (calledAddr);
the current code to be executed (nextstep);
the gas left (gasLeft);
two extra fields that we use with debug information:
funcNameexecStackE and msgexecStackEl.
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Execution Stack Element

The elements of ExecutionStack are given by

record ExecStackEl : Set where
field lastCallAddress calledAddress : Address

continuation : Msg → SmartContractExec Msg
costCont : Msg → N
funcNameexecStackEl : FunctionName
msgexecStackEl : Msg

with the following fields:
The address that made the last call (lastCallAddress);
the address that was called (calledAddress);
continuation which determines the next execution step to be executed
depending on the message returned after the call to the function has
been completed;
funcNameexecStackE which is the last function called and the
argument of the last function call (msgexecStackEl).
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Evaluation of Function Calls

evaluateTerminatingfinal :
Ledger
→ (initialAddr lastCallAddr calledAddr: Address)
→ (funName : FunctionName)
→ (msg : Msg )
→ (gaslimit : N)
→ Ledger × MsgOrErrorWithGas

Evaluates a call
§ from lastCallAddr
§ to function funName applied to msg in contract calledAddr
§ using gas limit gaslimit
§ assuming the chain of calls was initiated from externally owned account

initialAddr

evaluateTerminatingfinal termination checks in Agda.
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Conclusion

Solidity is object oriented and functions can call each other
mutually.
Use of gas to guarantee termination.
Development of a model in Agda which allows to execute smart
contract functions.
Gas cost is added as explicit parameters to commands.
Execution of smart contracts termination checks in Agda.
Development of a simulator, which allows to simulate Ethereum
including smart contracts interactively in Agda.
Aim is to use weakest precondition semantics to verify Solidity
smart contracts.
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Thank you for listening.
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